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The regularized and the modified regularized long wave (RLW and MRLW) equations are solved numer-
ically by the Bernstein polynomials in both the space and time directions based on Kronecker product. In
this paper, we applied a fully different Bernstein collocation method than the other methods which used
Bernstein polynomials to solve the problems. The approximate solution is defined by the Bernstein poly-
nomials in all directions. A general form for anym derivative of any Bernstein polynomials is constructed.
A general matrix form for the vector of anym derivative of any Bernstein polynomials is also constructed.
Convergence study for the proposed numerical scheme is investigated. To determine the conservation
properties of the RLW and MRLW equations, three invariants of motion (I1, I2 and I3) are computed. To
test the accuracy, two error norms (kEk2 and kEk1) are evaluated. Numerical outcomes and comparisons
with other techniques for the single and the interaction of two solitary waves for RLW and MRLW equa-
tions are presented.
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1. Introduction

Nonlinear partial differential equations (NPDEs) have been one
of the essential tools for modeling most real phenomena in science
and engineering such as the regularized long wave (RLW) equation
and the modified regularized long wave (MRLW) equation. Pere-
grine [1] was the first who presented the RLW and MRLW equation
as a model for small amplitude long waves on the surface of water
in a channel. The RLW and MRLW equation are used to describe
waves in plasma, shallow water and phonon packets in nonlinear
crystals. . . etc.

In this paper, we consider the following form of the generalized
regularized long wave (GRLW) equation [4,11]:

@u
@t

þ 1þ q qþ 1ð Þuq½ � @u
@x

� l @3u
@x2@t

¼ 0;

x; tð Þ 2 x0; xMx½ � � 0; tMt½ �: ð1:1Þ
The analytical value of Eq. (1.1) is given by [4,11]:

u x; tð Þ ¼ A sech2 BW x� xc � tþ 1ð Þtð Þ½ �
h i1

q
; ð1:2Þ

with amplitude A ¼ tðqþ2Þ
2q

h i1
q
and the inverse width BW ¼ q

2Q , where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffi

t
l tþ1ð Þ

q
.

Eq. (1.1) is called the RLW equation and the MRLW equation if
q ¼ 1 and q ¼ 2, respectively. Some of the previous studies on the
RLW and MRLW equations are in [2–8,11–28], and references
therein. Zeybek and Karakoc [2] presented lumped Galerkin
approach with cubic B-spline to solve the GRLW equation. Zheng
et al. [3] studied the barycentric interpolation collocation mehod
to solve the GRLW equation. Hammad and El-Azab [4] used Cheby-
shev–Chebyshev spectral collocation method (C-C SCM) to solve
GRLW equation. Akbari and Mokhtari [5] presented a compact
finite difference method to solve the generalized long wave equa-
tion. Guo et al. [6] used the element-free kp-Ritz method to solve
the GRLW equation. Huang and Zhang [7] obtained the element-
free approximation of GRLW equation. Mohammadi [8] obtained
the numerical solution of the GRLW equation by using the expo-
nential B-spline collocation method. Hammad and El-Azab [11]
used a 2 N order compact finite difference method (CFDM) to solve
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GRLW equation. Karakoc and Zeybek [12] used septic B-spline
collocation method to solve GRLW equation. Hassan [13] used
Fourier spectral method to solve MRLW equation. There are a lot
of another works for the GRLW equations, such as: Petrov–Galerkin
finite element method [16], Riccati – Bernoulli sub-ODE method
and subdomain finite element method [19], finite difference
approach for time derivatives and deltashaped basis functions for
space discretization [21], a collocation algorithm based on quintic
B-splines [22], four local momentum-preserving algorithms [23],
travelling wave solutions [25], semi-analytical method with a
new fractional derivative operator [26], the impact of LRBF FD on
the solutions [27] and conservative difference scheme of solitary
wave solutions [28]. Also, there are a lot of another works for the
MRLW equation, such as: collocation of quintic B-splines over the
finite elements [14], a septic B-spline collocation method [15],
cubic B-spline Galerkin finite element method [17], Petrov-
Galerkin finite element method [18] and B spline environment
[20]. Jhangeer et al. [24] used analytical and numerical approaches
for the perturbed and unperturbed fractional RLW equation.

Our main purpose in this paper is to improve and apply the
Bernstein collocation method (B-CM) based on Kronecker product
for solving the RLW and MRLW equations. Firstly, we discretize
the space and time directions by Bernstein polynomials, then we
get system of nonlinear equations which are solved numerically
by Newton – Raphson method. There are many researchers used
the Bernstein polynomials collocation method (BPCM) for the solu-
tion of the NPDEs, integral and integro-differential equations as in
[9,10] and references therein, also, there are another works based
on Bernstein polynomials such as [29–31].

The paper is coordinated in six sections as follows: In Section 2,
a Bernstein collocation method (B-CM) is presented and the pro-
posed scheme is constucted by using Kronecker and Hadamard
products, also through this section, we constructed a general form
for anym derivative of any Bernstein polynomials and we also con-
structed a general matrix form for the vector of any m derivative of
any Bernstein polynomials. In Section 3, a B-CM is applied to solve
the RLW and MRLW equations. In Section 4, convergence study for
the proposed numerical scheme is investigated. Numerical results
for solving the RLW and MRLW equation, the single solitary wave
and the interaction of two solitary waves for our both problems are
presented, also numerical comparisons with other methods are
presented in Section 5. Finally, a conclusion is given at the end of
the paper in Section 6.

2. Numerical methodology

Through this section, the Bernstein polynomials and their
derivatives are determined. The general form for any derivative
of any Bernstein polynomials is introduced for the first time in this
paper, also a general matrix form of a vector of any derivative of
any Bernstein polynomials is constructed. The implementation of
Bernstein collocation method is done for getting the approximate
solution of the RLW and MRLW by using Kronecker and Hadamard
product which are used to represent all the equations in a matrix
form.

Firstly, consider mesh points xi; tj
� �

in the region
x0; xMx½ � � 0; tMt½ � are defined by

xi ¼ x0 þ ihx; hx ¼ xiþ1 � xi ¼ xMx � x0
Mx

; 0 � i � Mx:

tj ¼ jht; ht ¼ tjþ1 � tj ¼ tMt

Mt
; 0 � j � Mt :
4082
2.1. Bernstein polynomials

The general form of the Bernstein polynomials of degree Mx on
the interval x0; xMx½ � are defined [9,10] by

Bi;Mx xð Þ ¼ Mx

i

� �
x� x0ð Þi xMx � xð ÞMx�i

xMx � x0ð ÞMx
; i ¼ 0;1; � � � ;Mx; ð2:1Þ

where the binomial coefficients are given by

Mx

i

� �
¼ Mx!

i! Mx � ið Þ! :

There are Mx + 1 polynomials with degree Mx satisfy the follow-
ing properties:

Bi;Mx xð Þ ¼ 0; if i < 0 or i > Mx;

Bi;Mx x0ð Þ ¼ Bi;Mx xMxð Þ ¼ 0; for 1 � i � Mx � 1; ð2:2Þ

XMx

i¼0

Bi;Mx xð Þ ¼ 1:

The Bernstein polynomials form a complete basis over the inter-
val x0; xMx½ �, we can show that any given polynomial of degree Mx

can be expressed in terms of linear combination of the basis func-
tions. The recurrence relation and the derivatives of the Bernstein
polynomials are given by

Bi;Mx xð Þ ¼ xMx � x
xMx � x0

Bi;Mx�1 xð Þ þ x� x0
xMx � x0

Bi�1;Mx�1 xð Þ; ð2:3Þ

B0
i;Mx

xð Þ ¼ Mx

xMx � x0
Bi�1;Mx�1 xð Þ � Bi;Mx�1 xð Þ� �

; ð2:4Þ

B00
i;Mx

xð Þ ¼ Mx Mx � 1ð Þ
xMx � x0ð Þ2

Bi�2;Mx�2 xð Þ � 2Bi�1;Mx�2 xð Þ þ Bi;Mx�2 xð Þ� �
;

ð2:5Þ

B000
i;Mx

xð Þ ¼ Mx Mx � 1ð Þ Mx � 2ð Þ
xMx � x0ð Þ3

Bi�3;Mx�3 xð Þ � 3Bi�2;Mx�3 xð Þ�
þ 3Bi�1;Mx�3 xð Þ � Bi;Mx�3 xð Þ�; ð2:6Þ

and hence, the m derivative of any Bernstein polynomials is
given by

BðmÞ
i;Mx

xð Þ ¼
Qm

k¼1 Mx � kþ 1ð Þ
xMx � x0ð Þm

Xm
j¼0

m

j

� �
�1ð ÞjBi�mþj;Mx�m xð Þ

" #
; ð2:7Þ

we can rewrite any m derivative of any Bernstein polynomials
in a matrix form as



B mð Þ
0;Mx

xð Þ
B mð Þ
1;Mx

xð Þ
..
.

..

.

..

.

..

.

..

.

B mð Þ
Mx ;Mx

xð Þ

2
66666666666666666664

3
77777777777777777775

¼
Qm

k¼1 Mx � kþ 1ð Þ
xMx � x0ð Þm

�1ð Þm 0 � � � 0 0 0 0 0 0 0 0

�1ð Þm�1 m

1

� �
�1ð Þm 0 � � � 0 0 0 0 0 0 0

�1ð Þm�2 m
2

� �
�1ð Þm�1 m

1

� �
�1ð Þm 0 � � � 0 0 0 0 0 0

�1ð Þm�3 m

3

� �
�1ð Þm�2 m

2

� �
�1ð Þm�1 m

1

� �
�1ð Þm 0 � � � 0 0 0 0 0

�1ð Þm�4 m

4

� �
�1ð Þm�3 m

3

� �
�1ð Þm�2 m

2

� �
�1ð Þm�1 m

1

� �
�1ð Þm 0 � � � 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � 0 1 � m
1

� �
m
2

� �
� m

3

� �
m
4

� �

0 0 0 0 0 � � � 0 1 � m

1

� �
m

2

� �
� m

3

� �

0 0 0 0 0 0 � � � 0 1 � m
1

� �
m
2

� �

0 0 0 0 0 0 0 � � � 0 1 � m
1

� �
0 0 0 0 0 0 0 0 � � � 0 1

2
66666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777775

B0;Mx�m xð Þ
B1;Mx�m xð Þ
B2;Mx�m xð Þ

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

BMx�m;Mx�mðxÞ

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775
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or BðmÞ xð Þ ¼ DmBMx�m xð Þ; ð2:8Þ

where BðmÞ xð Þ ¼ BðmÞ
0;Mx

xð Þ; BðmÞ
1;Mx

xð Þ; � � � ; BðmÞ
Mx ;Mx

xð Þ
h iT

;

BMx�m xð Þ ¼ B0;Mx�m xð Þ; B1;Mx�m xð Þ; � � � ; BMx�m;Mx�m xð Þ½ �T ;
and Dm is the Mx þ 1ð Þ � Mx �mþ 1ð Þ operational matrix of

derivative m.

2.2. The proposed numerical scheme

The approximate solution is defined by

u x; tð Þ ¼
XMt

j¼0

XMx

i¼0

cj;i Bj;Mt tð Þ Bi;Mx xð Þ; ð2:9Þ

where Bj;Mt tð Þ and Bi;Mx xð Þ are the Bernstein polynomials and cj;i
are the unknown coefficients.

Eq. (2.9) at point xi; tj
� �

with Kronecker product becomes

u xi; tj
� � ¼ B tj

� �� B xið Þ� �
C; ð2:10Þ

where

B tj
� � ¼ B0;Mt tj

� �
; B1;Mt tj

� �
; � � � ; BMt ;Mt tj

� �� �
; ð2:11Þ

B xið Þ ¼ B0;Mx xið Þ; B1;Mx xið Þ; � � � ; BMx ;Mx xið Þ½ �; ð2:12Þ
and

C ¼ c0;0; � � � ; c0;Mx ; c1;0; � � � ; c1;Mx ; � � � ; cMt ;0; � � � ; cMt ;Mx½ �T : ð2:13Þ
The rth order partial derivative of u with respect to x is defined

by

@r

@xr
u x; tð Þ ¼

XMt

j¼0

XMx

i¼0

cj;i Bj;Mt tð Þ BðrÞ
i;Mx

xð Þ;

or

@r

@xr
u xi; tj
� � ¼ B tj

� �� DrBMx�r xið Þ� �
C: ð2:14Þ
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The sth order partial derivative of u with respect to t is defined
by

@s

@ts
u x; tð Þ ¼

XMt

j¼0

XMx

i¼0

cj;i B
ðsÞ
j;Mt

tð Þ Bi;Mx xð Þ;

or

@s

@ts
u xi; tj
� � ¼ DsBMt�s tj

� �� B xið Þ� �
C: ð2:15Þ

The kth and lth order partial derivatives of u with respect to x
and t are defined by

@kþl

@xk@tl
u x; tð Þ ¼

XMt

j¼0

XMx

i¼0

cj;i B
ðlÞ
j;Mt

tð Þ BðkÞ
i;Mx

xð Þ;

or

@kþl

@xk@tl
u xi; tj
� � ¼ DlBMt�l tj

� �� DkBMx�k xið Þ� �
C: ð2:16Þ

By the same way, we can compute any partial derivatives of the
approximate solution u.
3. Implementation on GRLW

In this section, we apply our proposed scheme to solve the RLW
and MRLW Eq. (1.1) which is

ut þ 1þ q qþ 1ð Þuq½ �ux � luxxt ¼ 0: ð3:1Þ

Using the above Section 2, From Eqs. (2.10), (2.14) – (2.16), Eq.
(3.1) at the point xi; tj

� �
becomes

D1BMt�1 tj
� �� B xið Þ� �

C

þ 1þ q qþ 1ð Þ B tj
� �� B xið Þ� �

C
� �qh i

B tj
� �� D1BMx�1 xið Þ� �

C
� �

� l D1BMt�1 tj
� �� D2BMx�2 xið Þ� �

C ¼ 0; ð3:2Þ
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By computing Eq. (3.2) at all points xi; tj
� �

for i ¼ 1;2; � � � ;Mx � 1
and j ¼ 1; � � � ;Mt , we get

BMt�1½ �2:Mtþ1:: � D1 � Bx½ �2:Mx ::

	 

� C

þ 1þ q qþ 1ð Þ Bt½ �2:Mtþ1:: � Bx½ �2:Mx ::

	 

� C

h iqh i�
� Bt½ �2:Mtþ1:: � BMx�1½ �2:Mx ::

� D1

	 

� C

	 

� l BMt�1½ �2:Mtþ1:: � D1 � BMx�2½ �2:Mx ::

� D2

	 

� C ¼ O

�
; ð3:3Þ

BMt�1½ �2:Mtþ1::, Bx½ �2:Mx ::
, Bt½ �2:Mtþ1::, . . . and BMx�2½ �2:Mx ::

in the above
Eq. (3.3) are submatrices. BMt�1½ �2:Mtþ1:: is the submatrix from row 2
to row Mt þ 1 and all columns in matrix BMt�1, similarly, the other
submatrices can be represented. The symbol � is the Hadamard
product. O is Mtð Þ Mx � 1ð Þ zeros vector. The submatrices in Eq.

(3.3) are defined by

Bt ¼

B0;Mt t0ð Þ B1;Mt t0ð Þ � � � BMt ;Mt t0ð Þ
B0;Mt t1ð Þ B1;Mt t1ð Þ � � � BMt ;Mt t1ð Þ

..

. ..
. ..

. ..
.

B0;Mt tMtð Þ B1;Mt tMtð Þ � � � BMt ;Mt tMtð Þ

2
666664

3
777775

T

; ð3:4Þ

Bx ¼

B0;Mx x0ð Þ B1;Mx x0ð Þ � � � BMx ;Mx x0ð Þ
B0;Mx x1ð Þ B1;Mx x1ð Þ � � � BMx ;Mx x1ð Þ

..

. ..
. ..

. ..
.

B0;Mx xMxð Þ B1;Mx xMxð Þ � � � BMx ;Mx xMxð Þ

2
666664

3
777775

T

; ð3:5Þ
J Cð Þ ¼

@f 1 Cð Þ
@c0;0

� � � @f 1 Cð Þ
@c0;Mx

@f 1 Cð Þ
@c1;0

� � � @f 1 Cð Þ
@c1;Mx

� � � @f 1 Cð Þ
@cMt ;Mx

@f 2 Cð Þ
@c0;0

� � � @f 2 Cð Þ
@c0;Mx

@f 2 Cð Þ
@c1;0

� � � @f 2 Cð Þ
@c1;Mx

� � � @f 2 Cð Þ
@cMt ;Mx

@f 3 Cð Þ
@c0;0

� � � @f 3 Cð Þ
@c0;Mx

@f 3 Cð Þ
@c1;0

� � � @f 3 Cð Þ
@c1;Mx

� � � @f 3 Cð Þ
@cMt ;Mx

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

@f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
@c0;0

� � � @f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
@c0;Mx

@f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
@c1;0

� � � @f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
@c1;Mx

� � � @f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
@cMt ;Mx

2
66666666664

3
77777777775

ð4:3Þ
BMt�1 ¼

B0;Mt�1 t0ð Þ B1;Mt�1 t0ð Þ � � � BMt�1;Mt�1 t0ð Þ
B0;Mt�1 t1ð Þ B1;Mt�1 t1ð Þ � � � BMt�1;Mt�1 t1ð Þ

..

. ..
. ..

. ..
.

B0;Mt�1 tMtð Þ B1;Mt�1 tMtð Þ � � � BMt�1;Mt�1 tMtð Þ

2
6666664

3
7777775

T

; ð3:6Þ

BMx�1 ¼

B0;Mx�1 x0ð Þ B1;Mx�1 x0ð Þ � � � BMx�1;Mx�1 x0ð Þ
B0;Mx�1 x1ð Þ B1;Mx�1 x1ð Þ � � � BMx�1;Mx�1 x1ð Þ

..

. ..
. ..

. ..
.

B0;Mx�1 xMxð Þ B1;Mx�1 xMxð Þ � � � BMx�1;Mx�1 xMxð Þ

2
6666664

3
7777775

T

;

ð3:7Þ
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BMx�2 ¼

B0;Mx�2 x0ð Þ B1;Mx�2 x0ð Þ � � � BMx�2;Mx�2 x0ð Þ
B0;Mx�2 x1ð Þ B1;Mx�2 x1ð Þ � � � BMx�2;Mx�2 x1ð Þ

..

. ..
. ..

. ..
.

B0;Mx�2 xMxð Þ B1;Mx�2 xMxð Þ � � � BMx�2;Mx�2 xMxð Þ

2
66664

3
77775

T

:

ð3:8Þ
The system of nonlinear equations (3.3) consists of Mtð Þ Mx � 1ð Þ

equations with Mx þ 1ð Þ Mt þ 1ð Þ unknowns (the vector C), we add
Mx þ 1ð Þ initial conditions and 2Mtð Þ boundary conditions to Eq.
(3.3), then we get Mx þ 1ð Þ Mt þ 1ð Þ system of nonlinear equations
with Mx þ 1ð Þ Mt þ 1ð Þ unknowns. This system is solved by Newton
– Raphson method with 0.00002 initial values vector to find the
vector C, then we obtain the approximate solution by Eq. (2.10).
4. Convergence study

To solve the system of nonlinear equations (3.3) with the initial
and boundary conditions by Newton – Raphson method, first, all
the equations take the following general form:

F Cð Þ ¼ O; ð4:1Þ

where F Cð Þ ¼ f 1 Cð Þ; f 2 Cð Þ; f 3 Cð Þ; � � � ; f Mxþ1ð Þ Mtþ1ð Þ Cð Þ
h iT

, the vector O

is Mt þ 1ð Þ Mx þ 1ð Þ zeros vector and C is the vector in Eq. (2.13).
The solution of the system of nonlinear Eqs. (4.1) by using New-

ton – Raphson method take the general iterative form:

Cnþ1 ¼ Cn � J�1 Cnð Þ F Cnð Þ; ð4:2Þ
for the number of iteration n ¼ 0; 1; 2; 3; � � � :

The Jacobin matrix is given by
The inverse of Jacobin matrix (4.3) at any iteration exists if the
determinant of J Cnð Þ is nonzero, this means that J Cnð Þ is nonsingu-
lar matrix (i. e. det J Cnð Þð Þ ¼ J Cnð Þj j–0).

Hence, for suitable choice for the initial values vector C0 the
iterative Eq. (4.2) converges.

5. Numerical calculations

The error norms kEk2 and kEk1 are given by

kEk2 ¼
XMx

i¼0

hx Ui;j � ui;j

�� ��2" #1
2

; ð5:1Þ

kEk1 ¼ max
0�i�Mx

Ui;j � ui;j

�� ��; ð5:2Þ



Table 2
Numerical values of I1 ; I2; I3, kEk2 and kEk1 for single solitary waves of MRLW equation.

I1 I2 I3 kEk2 kEk1
Exact values 3:294930 0:683426 0:024121
t
0 3:185491 0:682050 0:024235 0 0
2 3:172303 0:682068 0:023539 0:062203 0:027067
4 3:143492 0:680985 0:022880 0:121555 0:053836
6 3:223022 0:688285 0:023067 0:179312 0:079366
8 3:229971 0:688489 0:022181 0:229782 0:098547

Table 3
Comparisons of kEk2 and kEk1 for single solitary waves of RLW equation.

Present method Mx ¼ Mt ¼ 30 CFDM [11] Mx ¼ 1001 & Mt ¼ 101 C-C SCM [4] Mx ¼ Mt ¼ 34

t kEk2 kEk1 kEk2 kEk1 kEk2 kEk1
2 0:000838 0:000661 0:013774 0:005403 0:000460 0:000531
4 0:000921 0:000493 0:012347 0:004610 0:000427 0:000485
6 0:003252 0:001680 0:010985 0:003841 0:000320 0:000348
8 0:008991 0:005348 0:009737 0:003158 0:000577 0:000855
10 0:006444 0:002655 0:008677 0:002656 0:000295 0:000269

Table 4
Comparisons of kEk2 and kEk1 for single solitary waves of MRLW equation.

Present method Mx ¼ 28 & Mt ¼ 10 CFDM [11] Mx ¼ 1001 & Mt ¼ 101 C-C SCM [4] Mx ¼ Mt ¼ 34

t kEk2 kEk1 kEk2 kEk1 kEk2 kEk1
2 0:062203 0:027067 0:039859 0:018973 0:004992 0:007067
4 0:121555 0:053836 0:036136 0:015780 0:004157 0:005363
6 0:179312 0:079366 0:032839 0:013296 0:003009 0:003749
8 0:229782 0:098547 0:030230 0:011791 0:013190 0:027966

Fig. 1. The single solitary waves for (a) RLW at t ¼ 2; 4; 6; 8 and 10, (b) MRLW at t ¼ 2; 4; 6 and 8.

Table 1
Numerical values of I1 ; I2; I3, kEk2 and kEk1 for single solitary waves of RLW equation.

I1 I2 I3 kEk2 kEk1
Exact values 1:989975 0:202616 0:644750
t
0 1:905616 0:201597 0:641899 0 0
2 1:922090 0:202107 0:643325 0:000838 0:000661
4 1:937151 0:202273 0:643722 0:000921 0:000493
6 1:922198 0:202864 0:645895 0:003252 0:001680
8 1:964870 0:204673 0:651771 0:008991 0:005348
10 1:957609 0:204165 0:649984 0:006444 0:002655
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Table 5
Numerical values of I1 ; I2 ; I3, kEk2 and kEk1 for the interaction of two solitary waves of RLW equation.

I1 I2 I3 kEk2 kEk1
Exact values 4:929360 0:810089 2:690570
t
0 4:876714 0:828941 2:760215 0 0
2 4:922790 0:833894 2:775963 0:096800 0:034412
4 4:781084 0:816752 2:711031 0:165736 0:065432
6 4:839147 0:826705 2:745497 0:251905 0:096595
8 4:773788 0:825988 2:738019 0:325612 0:124557
10 4:706124 0:824743 2:730428 0:393517 0:147443

Table 6
Numerical values of I1 ; I2; I3, kEk2 and kEk1 for the interaction of two solitary waves of MRLW equation.

I1 I2 I3 kEk2 kEk1
Exact values 6:736370 1:717650 0:100327
t
0 6:709516 1:738899 0:103261 0 0
2 6:172924 1:797366 0:043418 0:316567 0:189630
4 6:805982 1:761075 0:085794 0:374344 0:146518
6 6:477652 1:670898 0:061699 0:468016 0:182732
8 6:379932 1:659413 0:049539 0:581737 0:214964
10 6:246313 1:653736 0:033816 0:677125 0:236274
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where Ui;j is the analytical solution in Eq. (1.2) at xi; tj
� �

andui;j ¼ u xi; tj
� �

is the numerical solution in Eq. (2.10).
The invariants of motion for RLW equation are given by [4,11]

I1 ¼
Z xMx

x0

u dx ’ hx

XMx

i¼0

ui;j; ð5:3Þ

I2 ¼
Z xMx

x0

u2 þ l u2
x

� �
dx ’ hx

XMx

i¼0

u2
i;j þ l uxð Þ2i;j

h i
; ð5:4Þ

I3 ¼
Z xMx

x0

2u3 þ 3u2� �
dx ’ hx

XMx

i¼0

2u3
i;j þ 3u2

i;j

h i
: ð5:5Þ

The invariants of motion for MRLW equation are given by [4,11]

I1 ¼
Z xMx

x0

u dx ’ hx

XMx

i¼0

ui;j; ð5:6Þ

I2 ¼
Z xMx

x0

u2 þ l u2
x

� �
dx ’ hx

XMx

i¼0

u2
i;j þ l uxð Þ2i;j

h i
; ð5:7Þ

I3 ¼
Z xMx

x0

u4 � l u2
x

� �
dx ’ hx

XMx

i¼0

u4
i;j � l uxð Þ2i;j

h i
: ð5:8Þ

I1; I2 and I3 in the above equations represent mass, momentum
and energy, respectively.
5.1. Single solitary waves

To solve the RLW and MRLW Eq. (1.1) by the B-CM, the initial
and boundary conditions at selected collocation point xi; tj

� �
become

u xi;0ð Þ ¼ B 0ð Þ � B xið Þð ÞC ¼ A sech2 BW xi � x0ð Þ½ �
h i1

q
; ð5:9Þ
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u x0; tj
� � ¼ B tj

� �� B x0ð Þ� �
C ¼ 0; ð5:10Þ
u xMx ; tj
� � ¼ B tj

� �� B xMxð Þ� �
C ¼ 0; ð5:11Þ
ux x0; tj
� � ¼ B tj

� �� D1BMx�1 x0ð Þ� �
C ¼ 0; ð5:12Þ
ux xMx ; tj
� � ¼ B tj

� �� D1BMx�1 xMxð Þ� �
C ¼ 0: ð5:13Þ

The exact values for RLW equation are given by [4,11]

I1 ¼ 6t
Q

; I2 ¼ 6t2

Q
þ 6t2 l Q

5
and I3 ¼ 18t2

Q
þ 72t3

5Q
: ð5:14Þ

The exact values for MRLW equation are given by [4,11]

I1 ¼ p
ffiffiffi
t

p
Q

; I2 ¼ 2t
Q

þ 2tlQ
3

and I3 ¼ 4t2

3Q
� 2tlQ

3
: ð5:15Þ

Table 1 and Table 2 illustrate the numerical values of I1; I2; I3,
kEk2and kEk1 for RLW and MRLW equation, respectively, at
x0 ¼ 40; l ¼ 1, t ¼ 0:1and x 2 [30,65]. We take Mx ¼ Mt ¼ 30 for
RLW equation (the 3rd iteration of Newton – Raphson method is
taken), but we take Mx ¼ 28 and Mt ¼ 10 for MRLW equation
(the 1st iteration of Newton – Raphson method is taken). Tables 3
and 4 consiste of comparisons of kEk2 and kEk1 for single solitary
waves of RLW and MRLW equation between B-CM and other meth-
ods, respectively. In Table 3, the error norms of single solitary
waves of RLW for B-CM are less than the error norms for CFDM
[11] and the error norms for B-CM are consistent with the error
norms for C-C SCM [4], but in Table 4, the error norms of single
solitary waves of MRLW for B-CM are consistent with the error
norms for CFDM [11] and the error norms for B-CM are greater
than the error norms for C-C SCM [4]. Fig. 1 presents the motion
of single solitary waves at t ¼ 2; 4; 6; 8 and 10 for RLW equation
(Fig. 1 (a)) and at t ¼ 2; 4; 6 and 8 for MRLW equation (Fig. 1 (b)).
From Fig. 1, we observed that the speed remains fixed when the
soliton moves to the right through the space range x 2 ½0;100�



Fig. 2. Interaction of two solitary waves for RLW equation at (g): ðaÞ Exact solution; ðbÞ Numerical solution ðcÞ t ¼ 0; ðdÞ t ¼ 2; ðeÞ t ¼ 4 and ðfÞ t ¼ 6; ðgÞ t ¼ 8 and (h)
t ¼ 10.
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and the amplitude is nearly unchaged as the time t increases,
accordingly, the amplitude of the single solitary waves for RLW
and MRLW equation are 0:15 and 0:316228, respectively.

5.2. Interaction of two solitary waves

The initial condition of the RLW and MRLW Eq. (1.1) at selected
collocation point xi; tj

� �
are given by

u xi;0ð Þ ¼ B 0ð Þ � B xið Þð ÞC ¼
X2
l¼1

Al sech
2 BWl xi � xlð Þ½ �

h i1
q
; ð5:16Þ
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where Al ¼ tlðqþ2Þ
2q

h i1
q
, BWl ¼ q

2Ql, Ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

tl
l tlþ1ð Þ

q
for l ¼ 1; 2. tl and xl

are positive numbers.
The exact values for the interaction of two solitary waves for

RLW equation are computed by [4,11]

I1 ¼
X2
l¼1

6tl
Q l

; I2 ¼
X2
l¼1

6t2l
Q l

þ 6t2l l Ql

5

� �
and I3

¼
X2
l¼1

18t2l
Q l

þ 72t3l
5Ql

� �
: ð5:17Þ



Fig. 3. Interaction of two solitary waves for MRLW equation: (a) Exact solution, (b) Numerical solution (c) t ¼ 0, (d)t ¼ 2, (e) t ¼ 4 and (f) t ¼ 6. Part II Interaction of two
solitary waves for MRLW equation at (g) t ¼ 8 and (h) t ¼ 10.
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The exact values for the interaction of two solitary waves for
MRLW equation are calculated by [4,11]

I1 ¼
X2
l¼1

p
ffiffiffiffi
tl

p
Ql

; I2 ¼
X2
l¼1

2tl
Q l

þ 2tllQl

3

� �
and I3

¼
X2
l¼1

4t2l
3Ql

� 2tllQl

3

� �
: ð5:18Þ

Table 5 and Table 6 summarize the numerical values of
I1; I2; I3, kEk2and kEk1 for RLW and MRLW equation, respectively,
at x1 ¼ 15; x2 ¼ 35; t1 ¼ 0:2; t2 ¼ 0:1, l ¼ 1 and x 2 ½0;55�. We
take Mx ¼ 30 and Mt ¼ 10 for RLW equation but we take
4088
Mx ¼ 23 and Mt ¼ 11 for MRLW equation (the 1st iteration of
Newton – Raphson method is taken for both RLW and MRLW equa-
tion). Fig. 2 and Fig. 3 illustrate the interaction of two solitary
waves for RLW and MRLW equation at t ¼ 0; 2; 4; 6; 8 and 10,
respectively.
6. Conclusion

The Bernstein polynomials in both the space and time direc-
tions have been applied to solve the RLW equation and the MRLW
equation. We used the Kronecker product and Hadamard product,
hence the equations became in a matrix form so they are more
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easy and simple to use. The proposed scheme (B-CM) leads to
reduce the GRLW equations to system of nonlinear algebraic equa-
tions which has been solved numerically by Newton – Raphson
method. Convergence study for the proposed scheme is also pre-
sented. The above numerical outcomes and comparisons for the
RLW and MRLW equations show that the B-CM is qualified to solve
RLW and MRLW equation. At the end, the B-CM is qualified to solve
NPDEs, integral and integro-differential equations.
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